Genetic background determines the extent of islet amyloid formation in human islet amyloid polypeptide transgenic mice

Abstract
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and β-cell dysfunction. Islet amyloid is associated with reduced β-cell mass and function and develops in the majority of our C57BL/6J × DBA/2J (F1) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J × DBA/2J F1mice ( n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F1: 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 ± 3%, F1: 44 ± 8%, DBA2: 49 ± 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 ± 0.01%, F1: 9.2 ± 2.9%, DBA2: 5.7 ± 2.3%, p ≤ 0.01) were significantly lower in BL6 than F1and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F1( r2= 0.75, P < 0.001) and DBA2 ( r2= 0.87, P < 0.001) mice but not BL6 mice ( r2= 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F1and DBA2 mice) being more susceptible to amyloid deposition that replaces β-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.