Thermodiffusion of High-Density Electron-Hole Plasmas in Semiconductors

Abstract
The spatial distributions of temperature and density in electron-hole plasmas in surface-excited semiconductors are investigated with use of linear irreversible thermodynamics and a microscopic plasma theory. Above a certain threshold the density distribution is dominated by a characteristic density, which increases with temperature. Experimental results for Ge, unstressed Si, and Si under high uniaxial stress are in agreement with the theory.