Reduction of buffer layer conduction near plasma-assisted molecular-beam epitaxy grown GaN/AlN interfaces by beryllium doping

Abstract
Beryllium doping of epitaxial GaN layers is used to reduce leakage currents through interfacial or buffer conducting layers grown by plasma-assisted molecular-beam epitaxy on SiC. Capacitance–voltage measurements of Schottky barrier test structures and dc pinch-off characteristics of unintentionally doped GaN high-electron-mobility transistors indicate that these leakage currents are localized near the GaN/AlN interface of our AlGaN/GaN/AlN device structures. Insertion of a 2000 Å Be:GaN layer at the interface reduces these currents by three orders of magnitude.