Abstract
Traditional space-invariant regularization methods in tomographic image reconstruction using penalized-likelihood estimators produce images with nonuniform spatial resolution properties. The local point spread functions that quantify the smoothing properties of such estimators are space variant, asymmetric, and object-dependent even for space invariant imaging systems. The authors propose a new quadratic regularization scheme for tomographic imaging systems that yields increased spatial uniformity and is motivated by the least-squares fitting of a parameterized local impulse response to a desired global response. The authors have developed computationally efficient methods for PET systems with shift-invariant geometric responses. They demonstrate the increased spatial uniformity of this new method versus conventional quadratic regularization schemes in simulated PET thorax scans

This publication has 15 references indexed in Scilit: