Abstract
The digestive and metabolic effects of inulin (from chicory) were studied in rats adapted to semipurified diets containing 0, 5, 10 or 20% inulin (wt/wt). Moderate levels of inulin (5–10%) did not significantly affect food intake or body weight gain. Dietary inulin resulted in considerably greater cecal fermentation and a significantly greater intraluminal concentration of propionate (peaking at 58.4 mmol/L). A lower concentration of acetate (42.6 mmol/L) was observed in rats fed 20% inulin. Lactic fermentations were observed in rats fed the 10 or 20% inulin diets. The cecal pool of volatile fatty acids tended to reach a plateau in rats fed diets containing more than 10% inulin (up to 600–700 µmol), but volatile fatty acid absorption was a slightly hyperbolic function of the dietary inulin level. Butyrate absorption was proportionally lower than that of propionate. Inulin-containing diets induced an enlargement of the cecal pool of calcium, phosphate and (to a lesser extent) magnesium. There was also an enhanced absorption of these divalent cations. The cecal pool of bile acids was greater in rats fed inulin, and this oligosaccharide displayed a slight hypocholesterolemic effect, even in rats fed the 5% inulin diet. However, plasma triglycerides were depressed only in rats fed the 20% inulin diet. In conclusion, inulin seems very effective in promoting propionic fermentation and in enhancing the calcium content of the large intestine. However, high levels of inulin (>10%) may affect growth in rats and lead to acidic (pH 5.65) cecal fermentation.