Selective regrowth of Al0.30Ga0.70N p–i–n photodiodes

Abstract
We report on the device performance of selective-area regrown Al0.30Ga0.70N p–i–n photodiodes. Tensile strain, induced by the lattice mismatch between AlxGa1−xN and GaN, leads to cracking above the critical thickness in layers with high aluminum concentration. Selective-area regrown devices with ⩽70 μm diameters were fabricated without signs of cracking. These devices show low dark current densities with flat photoresponse and a forward turn-on current of ∼25 A/cm2 at 7 V. A quantum efficiency greater than 20% was achieved at zero bias with a peak wavelength of λ=315 nm. A differential resistance of R0=3.46×1014 Ω and a detectivity of D*=4.85×1013cm Hz1/2W−1 was demonstrated.