Electron counting of single-electron tunneling current

Abstract
Single-electron tunneling through a quantum dot is detected by means of a radio-frequency single-electron transistor. Poisson statistics of single-electron tunneling events are observed from frequency domain measurements, and individual tunneling events are detected in the time-domain measurements. Counting tunneling events gives an accurate current measurement in the saturated current regime, where electrons tunnel into the dot only from one electrode and tunnel out of the dot only to the other electrode.