A study of the effect of composition on the microstructural evolution of a–SixC1x: H PECVD films: IR absorption and XPS characterizations

Abstract
Amorphous silicon carbide films (a–SixC1x :H) deposited by the argon- or helium-diluted PECVD technique were studied as a function of their composition. Microstructural investigations were mainly achieved by means of FTIR and XPS techniques. Nuclear techniques were used to obtain precise information on the film hydrogen content. The Si–H IR-absorption band was deconvoluted in different monohydride and dihydride silicon environments. The existence of SiH2 bonds in the Si-rich composition was evidenced. From the analysis of the C–H and Si–H absorption bands it is shown that hydrogen atoms are preferentially bonded to carbon atoms. The deconvolution of the Si2p core level peak suggests that above a composition of x ∊ 0.5, the noncarburized (Si, Si, H) local environment contribution increases to the detriment of the hydrocarburized (Si, C, H) environments. From the evolution of the C1s peak, it can be deduced that there is a change in the carbon atom bonding states when the film composition is varied. These results are correlated and discussed in terms of the local bonding environments and their evolution with film composition.