Improvement of electron emission efficiency and stability by surface application of molybdenum silicide onto gated poly-Si field emitters

Abstract
As an approach to improve electron field emission and its stability, molybdenum (Mo) silicide formation on n/sup +/ polycrystalline silicon (poly-Si) emitters has been investigated. Mo silicide was produced by direct metallurgical reaction, namely, deposition of Mo and subsequent rapid thermal annealing. The surface morphologies and emission properties of Mo-silicided poly-Si (Mo-polycide) emitters have been examined and compared with those of poly-Si emitters. While anode current of 0.1 μA per tip could be obtained at the gate voltage of 82 V from poly-Si emitters, the same current level was measured at 72 V from Mo-polycide emitters. In addition, the application of Mo silicide onto poly-Si emitters reduced the emission current fluctuation considerably. These results show that the polycide emitters can have potential applications in vacuum microelectronics to obtain superior electron emission efficiency and stability.

This publication has 10 references indexed in Scilit: