Involvement of PKC‐α in regulatory volume decrease responses and activation of volume‐sensitive chloride channels in human cervical cancer HT‐3 cells

Abstract
1. The present study was carried out to identify the specific protein kinase C (PKC) isoform involved in regulatory volume decrease (RVD) responses, and to investigate the signal transduction pathways underlying the activation of volume-sensitive chloride channels in human cervical cancer HT-3 cells. The role of Ca2+ in RVD and in the activation of chloride currents was also studied. 2. The time course of RVDs was prolonged by microinjection of PKC-alpha antibody but not by PKC-beta or PKC-gamma antibody, and also by exposure to Ca2+-free medium, in particular when combined with microinjection of EDTA. Immunofluorescence staining showed that hypotonic superfusion evoked the translocation of PKC-alpha to the cell membrane, whereas PKC-beta or PKC-gamma remained unaffected. The translocation of PKC-alpha was observed a few minutes after hypotonic stress, reaching peak intensity at 30 min, and returned to the cytoplasm 60 min after hypotonic exposure. Western blot analyses showed an increased PKC-alpha level in terms of intensity and phosphorylation in the cell membrane, while neither PKC-beta nor PKC-gamma was activated upon hyposmotic challenge. 3. Whole-cell patch-clamp studies demonstrated that neomycin and PKC blockers such as staurosporine and H7 inhibited volume-sensitive chloride currents. The inhibitory effect of neomycin on chloride currents can be reversed by the PKC activator phorbol 12-myristate, 13-acetate (PMA). Moreover, the PKC inhibitor and PKC-alpha antibody, but not PKC-beta or PKC-gamma antibody, significantly attenuated the chloride currents. The activation of volume-sensitive chloride currents were insensitive to the changes of intracellular Ca2+ but required the presence of extracellular Ca2+. 4. Our results suggest the involvement of PKC-alpha and extracellular Ca2+ in RVD responses and the activation of volume-sensitive chloride channels in HT-3 cells.