Epitaxial growth and optical transitions of cubic GaN films

Abstract
Single-phase cubic GaN layers are grown by plasma-assisted molecular-beam epitaxy. The temperature dependence of the surface reconstruction is elaborated. The structural stability of the cubic growth in dependence of the growth stoichiometry is studied by RHEED measurements and numerical simulations of the experimental RHEED patterns. Growth oscillations on cubic GaN are recorded at higher substrate temperatures and nearly stoichiometric adatom coverage. Photoluminescence reveals the dominant optical transitions of cubic GaN and, by applying an external magnetic field, their characteristic g factors are determined.