Wnt genes define distinct boundaries in the developing human brain: Implications for human forebrain patterning
- 20 May 2004
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 474 (2) , 276-288
- https://doi.org/10.1002/cne.20112
Abstract
Understanding the factors that govern human forebrain regionalization along the dorsal–ventral and left–right (L‐R) axes is likely to be relevant to a wide variety of neurodevelopmental and neuropsychiatric conditions. Recent work in lower vertebrates has identified several critical signaling molecules involved in embryonic patterning along these axes. Among these are the Wingless‐Int (WNT) proteins, involved in the formation of dorsal central nervous system (CNS) structures, as well as in visceral L‐R asymmetry. We examined the expression of WNT2b and WNT7b in the human brain, because these genes have highly distinctive expression patterns in the embryonic mouse forebrain. In the human fetal telencephalon, WNT2b expression appears to define the cortical hem, a dorsal signaling center previously characterized in mouse, which is also confirmed by BMP7 expression. In diencephalon, WNT2b expression is restricted to medial dorsal structures, including the developing pineal gland and habenular nucleus, both implicated in CNS L‐R asymmetry in lower organisms. At 5 weeks gestation, WNT7b is expressed in cerebral cortical and diencephalic progenitor cells. As the cortical plate develops, WNT7b expression shifts, demarcating deep layer neurons of the neocortex and the hippocampal formation. Spatial and temporal expression patterns show startling similarity between human and mouse, suggesting that the developmental roles of these WNT genes may be highly conserved, despite the far greater size and complexity of the human forebrain. J. Comp. Neurol. 474:276–288, 2004.Keywords
This publication has 64 references indexed in Scilit:
- Human Brain Malformations and Their Lessons for Neuronal MigrationAnnual Review of Neuroscience, 2001
- Distinct Missense Mutations of the FGFR3 Lys650 Codon Modulate Receptor Kinase Activation and the Severity of the Skeletal Dysplasia PhenotypeAmerican Journal of Human Genetics, 2000
- Early development and composition of the human primordial plexiform layer: An immunohistochemical studyJournal of Comparative Neurology, 1999
- MECHANISMS OF WNT SIGNALING IN DEVELOPMENTAnnual Review of Cell and Developmental Biology, 1998
- Ligand-independent Activation of Fibroblast Growth Factor Receptors by Point Mutations in the Extracellular, Transmembrane, and Kinase DomainsJournal of Biological Chemistry, 1996
- Diencephalic AsymmetriesNeuroscience & Biobehavioral Reviews, 1996
- A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolutionTrends in Neurosciences, 1995
- Early areal differentiation of the human cerebral cortex: Entorhinal areaHippocampus, 1993
- Kallmann’s Syndrome — Beyond “Migration”New England Journal of Medicine, 1992
- Gyral development of the human brainAnnals of Neurology, 1977