Abstract
Effects of the A-cation disorder on the structural, magnetic and transport properties of the ABO3-type (La0.67Ca0.15Sr0.18)1x(Gd0.67Ba0.33)xCoO3 (x=0.0, 0.1, 0.2, 0.3, and 0.4) are studied. Based on x-ray diffraction, two crystallographic phases coexist in the compounds, and a progressive transition from rhombohedral structure to orthorhombic structure takes place with increasing x, with which the cation disorder increases. Two resistive transitions, a metal-to-metal and a metal-to-semiconductor, occur subsequently with decreasing temperature, with the upper resistive transition coinciding with a magnetic one. Both resistive transitions vary against x, with the upper one from ∼223 to ∼190 K and the lower one from ∼95 to ∼160 K corresponding to a change of x from 0.0–0.3. The presence of cation-size disorder drives the system from the cluster-glass state into the spin-glass state, accompanied by an enhancement of the semiconducting character of the compounds. The weak Jahn-Teller effects and the spin state transition could be responsible for the special cation disorder effects in the Co-based perovskites.