Abstract
The acceleration of saponin hemolysis by benzene, indol, and nonyl alcohol has been investigated as a function of temperature, and it has been found that these accelerators have negative temperature coefficients. This points to their being concentrated at the cell surface, and to the surface being the seat of their accelerating action. It is shown that the accelerating power of indol (used as a typical accelerator) is constant so long as the lysin in the system is capable of producing lysis per se, but that the acceleration falls off when only sublytic concentrations are present. The relations are expressed in a series of equations, and explained in terms of the reactions among the accelerator, the lysin, and the membrane component, which breaks down in spots, rather than uniformly, when lysis occurs. The argument involves a consideration of the idea that a monolayer of lysin at the cell surface is necessary for hemolysis, of Abramson's hypothesis of "key spots" on the surface, of the rate of escape of hemoglobin from the hemolyzing cell, and of the results of electrophoretic and impedance measurements. The existing theory of the kinetics is extended by introducing the idea of a variation in resistance from point to point in the cell membrane; in this form it describes the situation so far as is at present known, and shows that the results of the various methods of investigation are consistent with each other. The only idea discussed which seems to have little foundation is that lysis is determined by the formation of a monolayer of lysin at the cell surface; when this occurs, it must do so only as a special case. Finally, a semi-quantitative description of the frequency distribution of the resistances in the membrane is derived from existing data. The variation in resistance which it is necessary to assume is quite small, as might be expected in the case of a membrane with a regular ultra-structure.

This publication has 11 references indexed in Scilit: