A CMOS programmable analog memory-cell array using floating-gate circuits

Abstract
The complexity of analog VLSI systems is often limited by the number of pins on a chip rather than by the die area. Currently, many analog parameters and biases are stored off-chip. Moving parameter storage on-chip could save pins and allow us to create complex programmable analog systems. In this paper, we present a design for an on-chip nonvolatile analog memory cell that can be configured in addressable arrays and programmed easily. We use floating-gate MOS transistors to store charge, and we use the processes of tunneling and hot-electron injection to program values. We have fabricated two versions of this design: one with an nFET injection mechanism and one with a pFET injection mechanism. With these designs, we achieve greater than 13-bit output precision with a 39-dB power-supply rejection ratio and no crosstalk between memory cells.

This publication has 12 references indexed in Scilit: