Measurement and improvement of the adhesion of copper to polyimide

Abstract
A contact angle measurement technique has been used to obtain an estimate of the interfacial energy and thermodynamic adhesive strength between copper and polyimide [pyromellitic dyanhydride oxydianalyn (PMDA-ODA) and p-phenylene biphenyltetracarboinide (BPDA-PDA)]. Values of the strength of adhesion from these contact angle measurements are in reasonable agreement with values calculated using the Girifalco–Good–Fowkes nonpolar interfacial adhesion theory. Based on the surface energy it was predicted and experimentally observed that small copper clusters would embed into the polymer matrix if heated under ultrahigh vacuum conditions at temperatures near Tg of the polymer. Controlled embedding of nanometer clusters was utilized to produce a textured interface, where the partially embedded clusters acted as “nanonails” to anchor a metal overlayer to the underlying polyimide substrate. These nanonails greatly increased the bonding between the copper overlayer and the polyimide, as demonstrated by mechanical debonding studies.