Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance
Top Cited Papers
- 6 September 2006
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 575 (3) , 901-911
- https://doi.org/10.1113/jphysiol.2006.112094
Abstract
Brief, intense exercise training may induce metabolic and performance adaptations comparable to traditional endurance training. However, no study has directly compared these diverse training strategies in a standardized manner. We therefore examined changes in exercise capacity and molecular and cellular adaptations in skeletal muscle after low volume sprint‐interval training (SIT) and high volume endurance training (ET). Sixteen active men (21 ± 1 years, ) were assigned to a SIT or ET group (n= 8 each) and performed six training sessions over 14 days. Each session consisted of either four to six repeats of 30 s ‘all out’ cycling at ∼250% with 4 min recovery (SIT) or 90–120 min continuous cycling at ∼65% (ET). Training time commitment over 2 weeks was ∼2.5 h for SIT and ∼10.5 h for ET, and total training volume was ∼90% lower for SIT versus ET (∼630 versus∼6500 kJ). Training decreased the time required to complete 50 and 750 kJ cycling time trials, with no difference between groups (main effects, P≤ 0.05). Biopsy samples obtained before and after training revealed similar increases in muscle oxidative capacity, as reflected by the maximal activity of cytochrome c oxidase (COX) and COX subunits II and IV protein content (main effects, P≤ 0.05), but COX II and IV mRNAs were unchanged. Training‐induced increases in muscle buffering capacity and glycogen content were also similar between groups (main effects, P≤ 0.05). Given the large difference in training volume, these data demonstrate that SIT is a time‐efficient strategy to induce rapid adaptations in skeletal muscle and exercise performance that are comparable to ET in young active men.Keywords
This publication has 64 references indexed in Scilit:
- Early signaling responses to divergent exercise stimuli in skeletal muscle from well‐trained humansThe FASEB Journal, 2005
- Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exerciseThe FASEB Journal, 2005
- Very intense exercise-training is extremely potent and time efficient: a reminderJournal of Applied Physiology, 2005
- Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophyThe FASEB Journal, 2005
- Regulation of metabolic transcriptional co‐activators and transcription factors with acute exerciseThe FASEB Journal, 2005
- Selective activation of AMPK‐PGC‐1α or PKB‐TSC2‐mTOR signaling can explain specific adaptive responses to endurance or resistance training‐like electrical muscle stimulationThe FASEB Journal, 2005
- Intensified exercise training does not alter AMPK signaling in human skeletal muscleAmerican Journal of Physiology-Endocrinology and Metabolism, 2004
- Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT MethodMethods, 2001
- A role for high intensity exercise on energy balance and weight controlInternational Journal of Obesity, 1998
- Titrimetric determination of muscle buffering capacity (βmtitr) in biopsy samplesEquine Veterinary Journal, 1991