Interfacial overheating during melting of Si at 190 m/s

Abstract
An upper limit is placed on the overheating at the liquid/solid interface during melting of (100) Si at high interface velocity. The limit is based on an energy-balance analysis of melt depths measured in real time during pulsed-laser melting of Si on sapphire. When combined with previous measurements of the freezing kinetics of Si, this limit indicates that the kinetics of melting and freezing are nonlinear, i.e., the undercooling required to freeze at modest (15 m/s) velocities is proportionately much greater than the overheating required to melt at high (190 m/s) velocities.