Abstract
Numerical results on the evolution of thermal stresses in multilevel interconnects are presented. Two levels of aluminum lines with an aspect ratio of unity, aligned vertically or arranged in a staggered manner, are considered by recourse to the finite element analysis. The stresses are found to be significantly higher in the lower-level lines than in the upper-level lines, for both the aligned and staggered arrangements. The stress magnitudes are generally smaller in lines of staggered arrangement, compared to the case of aligned lines. Implications of the present findings are discussed, with directions of future studies highlighted.