Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization

Abstract
The chaotically driven circle map is considered as the simplest model of phase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed.