Annealing studies of low-temperature-grown GaAs:Be
- 15 February 1992
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 71 (4) , 1699-1707
- https://doi.org/10.1063/1.351200
Abstract
The isochronal and isothermal annealing characteristics of acceptor-doped GaAs:Be grown at low substrate temperatures (300 °C) by molecular-beam epitaxy (LTMBE) have been studied. The Be was introduced in a range of concentrations from 1016 to 1019 cm−3. Electrical measurements of as-grown material up to the highest Be concentration of 1019 cm−3 show that no free holes are contributed to the valence band even though Raman spectroscopy of the Be local vibrational mode indicates that the majority of the Be impurities occupy substitutional sites. It is proposed that Be acceptors are rendered inactive by the high concentration of AsGa-related native donor defects present in LTMBE material. The concentration of AsGa-related defects in the neutral charge state was estimated from infrared absorption measurements to be as high as 3×1019 cm−3. A distinct annealing stage at 500 °C, similar to that found in irradiation-damaged and plastically deformed GaAs, marks a rapid decrease in the concentration of AsGa-related defects. A second annealing stage near 800 °C corresponds to the activation of Be acceptors. The presence of gallium vacancies VGa was investigated by slow positron annihilation. Results indicate an excess concentration of VGa in LTMBE layers over bulk-grown crystals. Analysis of isothermal annealing kinetics for the removal of AsGa-related defects gives an activation energy of 1.7±0.3 eV. The defect removal mechanism is modeled with VGa-assisted diffusion of AsGa to As precipitates.This publication has 24 references indexed in Scilit:
- Si doping efficiency in GaAs grown at low temperaturesApplied Physics Letters, 1991
- Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperaturesApplied Physics Letters, 1990
- Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxyApplied Physics Letters, 1990
- Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a denseEL2-like bandPhysical Review B, 1990
- Infrared absorption of deep defects in molecular-beam-epitaxial GaAs layers grown at 200 °C: Observation of anEL2-like defectPhysical Review B, 1990
- Stoichiometry-related defects in GaAs grown by molecular-beam epitaxy at low temperaturesJournal of Vacuum Science & Technology B, 1989
- Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperaturesApplied Physics Letters, 1989
- New MBE buffer used to eliminate backgating in GaAs MESFETsIEEE Electron Device Letters, 1988
- Identification of the 0.82-eV Electron Trap,in GaAs, as an Isolated Antisite Arsenic DefectPhysical Review Letters, 1985
- Growth temperature dependence in molecular beam epitaxy of gallium arsenideJournal of Crystal Growth, 1978