Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae

Abstract
The effect of ethanol on the activities of the key enzymes of the glycolytic pathway and on two membrane functions related with fermentation, the glucose uptake system, and proton extrusion rate are examined. The results indicate that ethanol, up to 2M, does not cause any change of the glucose uptake velocity nor any substantial change in the key glycolytic enzyme activities while the fermentation rate is reduced by about 50%. In a cell extract 3M ethanol as well as incubation of yeast cells with 4M ethanol caused a considerable decrease of pyruvate kinase and hexokinase activities. Phosphofructokinase remained unchanged even at higher ethanol concentrations. Transmembrane proton flow was found to be the most sensitive of the functions tested toward ethanol, and it could represent the first target of ethanol action on fermentation.