Vapor sensing using the optical properties of porous silicon Bragg mirrors

Abstract
Large wavelength shifts have been measured in the reflectivity spectra of Bragg mirrors etched in porous silicon after exposure of the mirrors to vapor from organic solvents. The shift in the Bragg wavelength of the mirror arises from refractive index changes, induced by capillary condensation of the vapor in the mesoporous silicon, in the layers of the mirrors. Modeling of the reflectivity changes shows that the layer liquid volume fraction occurring in the measurements was 0.29 for acetone and 0.33 for chlorobenzene. Time-resolved measurements show that condensation occurs on the time scale of tens of seconds.