Abstract
Three-dimensional positron emission tomography admits a significant scatter fraction due to the large aperture of the detectors, and requires accurate scatter subtraction. A scatter-correction method, applicable to both emission and transmission imaging, calculates the projections of the single-scatter distribution, using an approximate image of the source and attenuating object. The scatter background is subtracted in projection space for transmission data and in image space for emission data, yielding corrected attenuation and emission images. The accuracy of this single-scatter distribution is validated for the authors' small imaging system by comparison with Monte Carlo simulations. The correction is demonstrated using transmission and emission data obtained from measurements on the authors' QPET imaging system using two acrylic phantoms. For the transmission data, generated with a flood source, errors of up to 24% in the linear attenuation coefficients resulted with no scatter subtraction, but the correction yielded an accurate value of mu =0.11+or-0.01 cm-1. For the emission data, the corrected images show that the scattered background has been removed to within the level of the background noise outside the source. The residual amplitude within a cold spot in one of the phantoms was reduced from 21% to 3% of the image amplitude.

This publication has 15 references indexed in Scilit: