Three-Dimensional Creep Analysis of Solder Joints in Surface Mount Devices

Abstract
Three-dimensional finite element analysis has been applied for determining time-dependent solder joint response of leaded surface mount components under thermal cycling. Two main challenges are the geometric complexity in mesh development and computationally intensive analysis because of the highly nonlinear material properties. Advanced techniques have been applied, including multi-point constraints for mesh transition, which reduces the number of degrees of freedom in the model, and substructuring, which effectively reduces computational time in the iterative analysis. The result is a generic approach for nonlinear creep analysis using commercial FEA software on a high performance workstation. Illustrations are provided for J and gullwing leaded packages.