Phospholipid methylation in macrophages is inhibited by chemotactic factors
- 1 June 1979
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 76 (6) , 2922-2926
- https://doi.org/10.1073/pnas.76.6.2922
Abstract
Chemotaxis by human monocytes was shown to require methylation mediated by S-adenosyl-L-methionine(AdoMet), but the specific transmethylation reaction necessary for this function was not elucidated. In an attempt to define the methylation requirement for chemotaxis, the effect of chemotactic agonists and antagonists on protein carboxy-0-methylation of protein and methylation of phospholipid in guinea pig macrophages was examined. Chemotactic agents tested over a wide dose and time range produced no alteration in carboxy-0-methylation. These agents did produce an effect on the methylation of phosphatidylethanolamine by macrophages. AdoMet-mediated phospholipid methylation was inhibited by as much as 73% by chemotactic factors, and there was excellent correlation (r [correlation coefficient] = 0.99) between their concentrations for producing half-maximal chemotactic responses and for inhibiting phospholipid methylation. The inhibition of methylation by chemotactic factors was observed at all incubation times and could not be explained by an increased turnover of membrane phospholipid. Neither the chemotaxis antagonist f[formyl]Phe-Met nor the nonchemotactic tripeptide Met-Met-Met significantly depressed phospholipid methylation. Immune phagocytosis by macrophages similarly did not alter phospholipid methylation. The chemotactic factors produced no alteration in total macrophage phospholipid synthesis or in the phospholipid methylation in a nonchemotactic cell type. The formation of newly methylated derivatives of phosphatidylethanolamine in macrophages was decreased by a biologically active dose of chemotactic factor. Chemotactic factors are apparently capable of altering the methylation of phosphatidylethanolamine in chemotactically responsive cells. The inhibition of phospholipid methylation by chemotactic factors may be necessary for the translation of a chemotactic signal on the surface of the cell into directional cell movement.Keywords
This publication has 18 references indexed in Scilit:
- Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis.Proceedings of the National Academy of Sciences, 1978
- Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes.Proceedings of the National Academy of Sciences, 1978
- Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine.Proceedings of the National Academy of Sciences, 1978
- Rapid Stimulation of protein carboxymethylation in leukocytes by a chemotactic peptideNature, 1978
- Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T lymphoma cellsCell, 1977
- Biologic and Biochemical Activities of Continuous Macrophage Cell Lines P388D1 and J774.1The Journal of Immunology, 1977
- Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins.Proceedings of the National Academy of Sciences, 1977
- Contractile proteins in phagocytosis: an example of cell surface-to-cytoplasm communication.1977
- Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes.Proceedings of the National Academy of Sciences, 1977
- Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system.Proceedings of the National Academy of Sciences, 1977