Abstract
This paper investigates the impact of barrier width and freezing level on the microphysical processes and pathways within the Reisner2 bulk microphysical parameterization (BMP) using a two-dimensional version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). As the barrier half-width is decreased incrementally from 50 km (relatively wide mountain) to 10 km (narrow mountain) for a deep orographic cloud and a 750-mb freezing level, the percentage of water vapor loss (WVL) rate over the windward slope leading to snow deposition decreases from 23% to 7%, while condensation increases from 74% to 93% of WVL rate. A narrow (10 km) barrier has less snow aloft, twice as much cloud water over the windward slope, and a shallow region of intense riming over the crest that results in twice as much graupel as the wide (50 km) barrier. It is found that a relatively wide barrier (≥30 km half-width) allows more time for snow growth alo... Abstract This paper investigates the impact of barrier width and freezing level on the microphysical processes and pathways within the Reisner2 bulk microphysical parameterization (BMP) using a two-dimensional version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). As the barrier half-width is decreased incrementally from 50 km (relatively wide mountain) to 10 km (narrow mountain) for a deep orographic cloud and a 750-mb freezing level, the percentage of water vapor loss (WVL) rate over the windward slope leading to snow deposition decreases from 23% to 7%, while condensation increases from 74% to 93% of WVL rate. A narrow (10 km) barrier has less snow aloft, twice as much cloud water over the windward slope, and a shallow region of intense riming over the crest that results in twice as much graupel as the wide (50 km) barrier. It is found that a relatively wide barrier (≥30 km half-width) allows more time for snow growth alo...