Nonlinear dynamics of a laser diode subjected to both optical and electronic feedback

Abstract
It is demonstrated that tailored optoelectronic feedback can be used selectively to excite periodic dynamical output from external cavity semiconductor lasers undergoing a period-doubling bifurcation cascade on the route to the chaotic coherence-collapse regime. The optoelectronic feedback can effectively suppress or invert the bifurcation sequence so that low-order periodic motion can be resonantly excited from high-order periodic or chaotic dynamics. The robustness of coherence-collapse control to intrinsic laser-diode noise is investigated. The application of the technique in chaotic communications and its role in chaos control are discussed.