Abstract
The rapid kinetics of [3H]inositol phosphate accumulation and turnover were examined in rat cerebral-cortex slices after muscarinic-receptor stimulation. Markedly increased [3H]inositol polyphosphate concentrations were observed to precede significant stimulated accumulation of [3H]inositol monophosphate. New steady-state accumulations of several 3H-labelled products were achieved after 5-10 min of continued agonist stimulation, but were rapidly and effectively reversed by subsequent receptor blockade. The results show that muscarinic-receptor activation involves phosphoinositidase C-catalysed hydrolysis initially of polyphosphoinositides rather than of phosphatidylinositol. Furthermore, prolonged carbachol stimulation is shown not to cause receptor desensitization, but to allow persistent hydrolysis of [3H]phosphatidylinositol bisphosphate and permit sustained metabolic flux through the inositol tris-/tetrakis-phosphate pathway.