Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing
Open Access
- 1 September 2010
- journal article
- research article
- Published by Cold Spring Harbor Laboratory in Genome Research
- Vol. 20 (10) , 1420-1431
- https://doi.org/10.1101/gr.106716.110
Abstract
Massively parallel DNA sequencing technologies have greatly increased our ability to generate large amounts of sequencing data at a rapid pace. Several methods have been developed to enrich for genomic regions of interest for targeted sequencing. We have compared three of these methods: Molecular Inversion Probes (MIP), Solution Hybrid Selection (SHS), and Microarray-based Genomic Selection (MGS). Using HapMap DNA samples, we compared each of these methods with respect to their ability to capture an identical set of exons and evolutionarily conserved regions associated with 528 genes (2.61 Mb). For sequence analysis, we developed and used a novel Bayesian genotype-assigning algorithm, Most Probable Genotype (MPG). All three capture methods were effective, but sensitivities (percentage of targeted bases associated with high-quality genotypes) varied for an equivalent amount of pass-filtered sequence: for example, 70% (MIP), 84% (SHS), and 91% (MGS) for 400 Mb. In contrast, all methods yielded similar accuracies of >99.84% when compared to Infinium 1M SNP BeadChip-derived genotypes and >99.998% when compared to 30-fold coverage whole-genome shotgun sequencing data. We also observed a low false-positive rate with all three methods; of the heterozygous positions identified by each of the capture methods, >99.57% agreed with 1M SNP BeadChip, and >98.840% agreed with the whole-genome shotgun data. In addition, we successfully piloted the genomic enrichment of a set of 12 pooled samples via the MGS method using molecular bar codes. We find that these three genomic enrichment methods are highly accurate and practical, with sensitivities comparable to that of 30-fold coverage whole-genome shotgun data.Keywords
This publication has 24 references indexed in Scilit:
- Target-enrichment strategies for next-generation sequencingNature Methods, 2010
- Identification of genetic variants using bar-coded multiplexed sequencingNature Methods, 2008
- A comprehensive assay for targeted multiplex amplification of human DNA sequencesProceedings of the National Academy of Sciences, 2008
- Genome-wide in situ exon capture for selective resequencingNature Genetics, 2007
- Direct selection of human genomic loci by microarray hybridizationNature Methods, 2007
- Multiplex amplification of large sets of human exonsNature Methods, 2007
- Microarray-based genomic selection for high-throughput resequencingNature Methods, 2007
- Accurate Multiplex Polony Sequencing of an Evolved Bacterial GenomeScience, 2005
- Genome sequencing in microfabricated high-density picolitre reactorsNature, 2005
- Segmental Duplications: Organization and Impact Within the Current Human Genome Project AssemblyGenome Research, 2001