Comparative Genetic Studies on the APRR5 and APRR7 Genes Belonging to the APRR1/TOC1 Quintet Implicated in Circadian Rhythm, Control of Flowering Time, and Early Photomorphogenesis
Open Access
- 15 November 2003
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant and Cell Physiology
- Vol. 44 (11) , 1119-1130
- https://doi.org/10.1093/pcp/pcg148
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified. Among those, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as Arabidopsis PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). Nonetheless, it is not very clear whether or not the APRR family members other than APRR1/TOC1 are also implicated in the mechanisms underlying the circadian rhythm. To address this issue further, here we characterized a set of T-DNA insertion mutants, each of which is assumed to have a severe lesion in each one of the quintet genes (i.e. APRR5 and APRR7). For each of these mutants (aprr5-11 and aprr7-11) we demonstrate that a given mutation singly, if not directly, affects the circadian-associated biological events simultaneously: (i) flowering time in the long-day photoperiod conditions, (ii) red light sensitivity of seedlings during the early photomorphogenesis, and (iii) the period of free-running rhythms of certain clock-controlled genes including CCA1 and APRR1/TOC1 in constant white light. These results suggest that, although the quintet members other than APRR1/TOC1 may not be directly integrated into the framework of the central oscillator, they are crucial for a better understanding of the molecular mechanisms underlying the Arabidopsis circadian clock.Keywords
This publication has 58 references indexed in Scilit:
- TheArabidopsis SRR1gene mediates phyB signaling and is required for normal circadian clock functionGenes & Development, 2003
- The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thalianaNature, 2002
- LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in ArabidopsisDevelopmental Cell, 2002
- Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in ArabidopsisCurrent Biology, 2002
- Reciprocal Regulation Between TOC1 and LHY / CCA1 Within the Arabidopsis Circadian ClockScience, 2001
- Day-Length Perception and the Photoperiodic Regulation of Flowering in ArabidopsisJournal of Biological Rhythms, 2001
- Cloning of the Arabidopsis Clock Gene TOC1 , an Autoregulatory Response Regulator HomologScience, 2000
- Circadian rhythms in plants: a millennial viewPhysiologia Plantarum, 2000
- GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domainsThe EMBO Journal, 1999
- Signalling in light-controlled developmentSeminars in Cell & Developmental Biology, 1999