Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films

Abstract
Laser-induced chemical vapor deposition of silicon carbonitride thin films has been investigated using a continuous wave CO 2 laser in parallel configuration with the substrate. The reactant gases in this process, hexamethyl disilazane and ammonia, are rapidly heated by CO 2 laser radiation due to their absorption of the laser energy. Polymerlike silicon carbonitride films or agglomerated nanosized particles are formed depending on process conditions. Dense, smooth films or nanostructured deposits have been synthesized at low substrate temperatures (T s <300 ° C ) on quartz, copper, and silicon and can be obtained with controlled microstructures. Surface morphology, composition, and type of chemical bonding have been studied with electron microscopy and spectroscopic analysis and are correlated to the most important laser process parameters. X-ray photoelectron spectroscopy and reflectance Fourier transform infrared spectroscopy show that the deposits consist of Si–N, Si–C, and Si–O bonds, linked together in a x-ray amorphous, polymerlike structure. The nitrogen content is about 40% and can be varied by adding ammonia to the reactant gas flow. The layers are readily contaminated with oxygen after exposure to air, caused by hydrolysis and/or oxidation.