Light-ion-beam-induced annealing of implantation damage in diamond

Abstract
The removal of defects in diamond by light-ion bombardment has been studied by means of Rutherford backscattering spectroscopy (RBS) channeling techniques. The damage produced by 1 × 1014 Sb ions cm−2 at 300 keV (below the critical dose for graphitization) was observed to diminish by as much as 50% under bombardment with H and He ions. The ion-beam-induced annealing has been studied as a function of ion dose and incident angle (channeling and random). Although the data sets differ markedly, they nearly coincide when the dose is normalized to the energy deposited by elastic collisions in the damaged region. This may indicate that nuclear and not electronic collisions contribute primarily to the in situ annealing in a reasonably good insulator such as diamond.