Nodulation of soybean byRhizobium japonicum mutants with altered capsule synthesis

Abstract
Spontaneous mutants with altered capsule synthesis were isolated from a marked strain of the symbiont,Rhizobium japonicum. Differential centrifugation was used to enrich serially for mutants incapable of forming capsules. The desired mutants were detected by altered colony morphology and altered ability to bind host plant lectin. Three mutants failed to form detectable capsules at any growth phase when cultured in vitro or in association with the host (soybean,Glycine max (L.) Merr.) roots. These mutants were all capable of nodulating and attaching to soybean roots, indicating that the presence of a capsule physically surrounding the bacterium is not required for attachment or for infection and nodulation. Nodulation by several of the mutants was linearly proportional to the amount of acidic exopolysaccharide that they released into the culture medium during the exponential growth phase, indicating that such polysaccharide synthesis is important and perhaps required for nodulation. Two of the mutants appeared to synthesize normal lectin-binding capsules when cultured in association with host roots, but not when cultured in vitro. Nodulation by these mutants appeared to depend on how rapidly after inoculation they synthesized capsular polysaccharide.