Anomalous redistribution of beryllium in GaAs grown by molecular beam epitaxy

Abstract
The purpose of this study is to investigate anomalous redistribution of beryllium (Be) in GaAs grown by molecular beam epitaxy (MBE). A concentration-dependent diffusion coefficient for Be is found from the substitutional-interstitial diffusion model. The importance of the generation of BeI from Ga point defects (vacancies or interstitials) in the diffusion process is also presented. Extremely rapid interstitial diffusion during growth, on the order of 30 μm in 1 h at 680 °C, has also been observed. This effect begins to occur for hole concentrations above 1019/cm3. Unintentional incorporation of Be into GaAs grown after closing the Be shutter is also presented. Consideration of the surface concentration of Be during MBE growth facilitates the explanation of this memory effect.

This publication has 13 references indexed in Scilit: