Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy‐poly(ethylene glycol) methacrylate by plasma technique

Abstract
Graft polymerization of methoxy-poly(ethylene glycol) methacrylate, an ester of methacrylic acid and monomethoxy-poly(ethylene glycol) (PEO), was performed onto a polyetherurethane (PU) film and tube under different polymerization conditions by a plasma treatment technique. The surface of grafted PU film was characterized by staining with dye, x-ray photoelectron spectroscopy, contact angle, and zeta potential. All these measurements indicated that water-soluble chains were immobilized on the PU surface, their location being restricted to the film surface region. The PU surface showed reduced protein adsorption in vitro and reduced platelet adhesion in vitro and ex vivo. The optimum graft density suppressing the protein adsorption was as low as 5 μg cm−2. When a small amount of dimethacrylate was added to the monomer solution for graft polymerization to introduce crosslinking in the grafted layer, protein adsorption was further slightly reduced. The extent of reduction in serum albumin adsorption was always less than that of γ-globulin. Although platelet adhesion was largely reduced by the surface graft polymerization, a definite amount of protein was always adsorbed to the grafted surface. © 1993 John Wiley & Sons, Inc.

This publication has 19 references indexed in Scilit: