Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics

Abstract
We describe active and nonlinear wave propagation devices for generation and detection of (sub)millimeter wave and (sub)picosecond signals. Shock-wave nonlinear transmission lines (NLTL's) generate /spl sim/4-V step functions with less than 0.7-ps fall times. NLTL-gated sampling circuits for signal measurement have attained over 700-GHz bandwidth. Soliton propagation on NLTL's is used for picosecond impulse generation and broadband millimeter-wave frequency multiplication. Picosecond pulses can also be generated on traveling-wave structures loaded by resonant tunneling diodes. Applications include integration of photodetectors with sampling circuits for picosecond optical waveform measurements and instrumentation for millimeter-wave waveform and network (circuit) measurements both on-wafer and in free space. General properties of linear and nonlinear distributed devices and circuits are reviewed, including gain-bandwidth limits, dispersive and nondispersive propagation, shock-wave formation, and soliton propagation.<>

This publication has 58 references indexed in Scilit: