Abstract
The nature of Moloney murine leukemia virus (M-MuLV)-specific proviral DNA in exogenously infected mouse cells was studied. M-MuLV clone A9 cells, NIH-3T3 fibroblasts productively infected with M-MuLV, were used. These cells contain 10-15 copies of M-MuLV proviral DNA. The state of methylation of M-MuLV proviral DNA was examined by cleaving A9 cell DNA with restriction endonucleases which have the dinucleotide CpG in their cleavage sequences. Analysis with such enzymes, which recognized 9 different sites in M-MuLV DNA, indicated that most if not all of the M-MuLV proviruses in A9 cells were completely unmethylated. An individual proviral integration was examined, using as probe adjacent single-copy cellular sequences. These sequences were obtained from a .lambda.-phage recombinant clone containing an M-MuLV provirus from the A9 cells. This individual integration also showed no detectable methylation. Endogenous MuLV-related sequences present in NIH-3T3 cells before infection were largely methylated. The configuration of chromatin containing M-MuLv proviruses was also investigated by digesting A9 nuclei with DNase I, followed by restriction analysis of the remaining DNA. Endogenous MuLV-related DNA was in chromatin relatively resistant to DNase I digestion; the majority of M-MuLV-specific proviruses were in domains of intermediate DNase I sensitivity. Two proviral copies hypersensitive to DNase I digestion were identified. Analogy to the DNase I sensitivity of expressed and nonexpressed globin genes suggested that the proviral copies containing DNase I-hypersensitive sites were transcribed.