Second-harmonic imaging of poled silica waveguides

Abstract
Electric-field poled silica-based waveguides are characterized by measurements of second-harmonic generation (SHG) and of the linear electro-optic effect (LEO). A SHG scanning technique allowing for high-resolution imaging of poled devices is demonstrated. Scans along the direction of the poling field show that the second-order optical nonlinearity is located near the interface between differently doped glass layers. Both SHG and LEO measurements indicate that the ratio between the main elements of the second-order nonlinear optical susceptibility tensor, χ33(2) and χ31(2), is significantly smaller than three.