Volumetric ultrasound system for left ventricle motion imaging

Abstract
An external ultrasound oscillating probe has been developed for the purpose of visualizing dynamically the left cardiac ventricle three-dimensional (3D) movements and deformations. The fundamental principle of this probe is to maintain in continuous oscillation a classical one-dimensional (1D) transducer array around its axis at a maximum oscillation rate of 3 degrees per millisecond. A global medical system, including hardware elements and a software package, has been designed for this application. A motorization set and electronic boards enable this new oscillating probe to be used with any recent echograph equipped with a cardiac module and an external triggering cineloop. Moreover, in order to obtain 3D/4D left ventricle movements from a set of 2D recorded images, a rendering method based on the 2D discrete Fourier transform is applied. Promising preliminary results have been obtained on some patients, and a clinical study on a great number of subjects (both healthy and heart complaint people) was carried out.

This publication has 37 references indexed in Scilit: