Myocardial Perfusion Imaging With Gadobutrol: A Comparison Between 3 and 1.5 Tesla With an Identical Sequence Design
- 1 July 2007
- journal article
- research article
- Published by Wolters Kluwer Health in Investigative Radiology
- Vol. 42 (7) , 499-506
- https://doi.org/10.1097/rli.0b013e3180339981
Abstract
To implement myocardial first-pass perfusion imaging at 3 Tesla and to evaluate the potential benefit with regard to signal parameters in comparison to 1.5 Tesla using identical sequence settings and an intraindividual comparison. In 16 volunteers, myocardial first-pass perfusion imaging was performed at 1.5 Tesla (Magnetom Avanto) and 3 Tesla (Magnetom TIM Trio) after injection of 0.05 mmol/kg body weight Gadobutrol using an accelerated saturation recovery TurboFLASH technique (GRAPPA; R = 2) at 1.5 and 3 Tesla. Detailed sequence parameters (TR 2.3 milliseconds, TE 0.93 milliseconds, flip angle 15°, bandwidth 780 Hz/px) as well as spatial resolution were kept identical for both field strengths. Artifacts were assessed quantitatively and qualitatively, signal-to-noise ratio (SNR) and contrast enhancement ratio (CER) were calculated from raw data signal intensity–time curves. A linear fit on the upslope was performed for semiquantitative perfusion analysis. SNR was significantly higher at 3 Tesla than at 1.5 Tesla (35.7 ± 11.9 vs. 18.0 ± 5.5, P < 0.001). CER was significantly greater at 3 Tesla than at 1.5 Tesla (2.2 ± 0.9 vs. 1.4 ± 0.5, P < 0.001). Maximum upslope was significantly higher at 3 Tesla than at 1.5 Tesla (3.3 ± 2.4 vs. 2.0 ± 1.0, P < 0.001). A qualitative examination of all images for artifacts by 2 board-certified radiologists yielded no significant differences between the field strengths. Three Tesla significantly improves CER and SNR compared with 1.5 Tesla with identical sequence parameters. In addition, the most important semiquantitative perfusion parameter maximum upslope is significantly increased. This may allow for an improvement of spatial resolution and potentially for a better delineation of perfusion defects. However, further studies are necessary to potentially demonstrate a benefit of 3 Tesla perfusion imaging in a clinical setting.Keywords
This publication has 36 references indexed in Scilit:
- Assessment of Myocardial Viability Using Delayed Enhancement Magnetic Resonance Imaging at 3.0 TeslaInvestigative Radiology, 2006
- Phase-Sensitive Inversion Recovery (PSIR) Single-Shot TrueFISP for Assessment of Myocardial Infarction at 3 TeslaInvestigative Radiology, 2006
- Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 TEuropean Radiology, 2005
- Coronary Artery Disease: Myocardial Perfusion MR Imaging with Sensitivity Encoding versus Conventional AngiographyRadiology, 2005
- Magnetic Resonance Perfusion Measurements for the Noninvasive Detection of Coronary Artery DiseaseCirculation, 2003
- Band artifacts due to bulk motionMagnetic Resonance in Medicine, 2002
- Assessment of Myocardial Perfusion in Coronary Artery Disease by Magnetic ResonanceCirculation, 2001
- Noninvasive Detection of Myocardial Ischemia From Perfusion Reserve Based on Cardiovascular Magnetic ResonanceCirculation, 2000
- SENSE: Sensitivity encoding for fast MRIMagnetic Resonance in Medicine, 1999
- Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging.Radiology, 1997