Abstract
The presence of terminal nucleotidyl transferase activities catalyzing the addition of AMP, CMP, GMP and UMP residues to the 3'' ends of oligonucleotide primers was detected in healthy tomato plants. These enzyme activities copurify with RNA-dependent RNA polymerase during the initial stages of purification. Their separation from RNA-dependent RNA polymerase is finally achieved by DEAE chromatography: terminal transferase activities are retained on DEAE while RNA-dependent RNA polymerase does not bind in the presence of 20 mM MgCl2. Elution by a linear gradient of 0 to 400 mM NH4Cl releases all 4 terminal transferase activities from the DEAE column at a concentration of 270 mM NH4Cl, thus suggesting that they may belong to one enzyme molecule; this question, however, needs further clarification. The enzyme activities are completely dependent on the presence of an RNA primer and are strongly influenced by its base composition as well as its chain length. Characterization of the respective reaction products by electrophoresis on 15% polyacrylamide sequencing gels reveals striking differences as to the number of nucleotides added to a given primer. In the case of UMP transfer to U8 or A8 and in the case of GMP transfer to A8 only 1 to 6 nucleoside monophosphates are added to the 3'' terminus of the oligonucleotide primer, whereas in the case of AMP transfer to A8 or U8, the CMP transfer to A8, and the GMP transfer to U8, longer chains of minimally 30 nucleotides are added to the respective primer. After gradient elution from DEAE the transferase preparation displays no nucleolytic activity when incubated in the presence of 3H-labeled ribosomal RNA or [3H]poly(A).cntdot.poly(U). Only in the case of [3H]poly(A) and [3H]poly(U) or [3H]poly(C) 10-15% of the radioactivity is transferred to acid-soluble counts.