Theory of superfast fronts of impact ionization in semiconductor structures

Abstract
We present an analytical theory for impact ionization fronts in reversely biased p^{+}-n-n^{+} structures. The front propagates into a depleted n base with a velocity that exceeds the saturated drift velocity. The front passage generates a dense electron-hole plasma and in this way switches the structure from low to high conductivity. For a planar front we determine the concentration of the generated plasma, the maximum electric field, the front width and the voltage over the n base as functions of front velocity and doping of the n base. Theory takes into account that drift velocities and impact ionization coefficients differ between electrons and holes, and it makes quantitative predictions for any semiconductor material possible.Comment: 18 pagers, 10 figure
All Related Versions