The regulatory domain of protein kinase C-ε restricts the catalytic-domain-specificity

Abstract
Protein kinase C (PKC) consists of a family of closely related enzymes that can be divided into two subfamilies (alpha, beta and gamma and delta, epsilon and zeta) on the basis of primary sequence. Functional differences have also been described; thus PKC-alpha, PKC-beta and PKC-gamma readily phosphorylate histone IIIS in vitro, whereas PKC-epsilon will not employ this substrate efficiently. We have previously demonstrated, however, that proteolytic cleavage of PKC-epsilon generates a constitutive kinase activity that is an efficient histone IIIS kinase [Schaap, Hsuan, Totty & Parker (1990) Eur. J. Biochem. 191, 431-435]. In order to investigate the structural basis for this switch in specificity, we have constructed a chimaeric protein containing the regulatory domain of PKC-epsilon fused to the catalytic domain of PKC-gamma. When this is expressed in COS1 cells the chimaeric kinase shows a substrate-specificity similar to that of PKC-epsilon rather than to that of PKC-gamma. This demonstrates a role for the regulatory domain in substrate selection of PKC-epsilon.