Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

Abstract
Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking–fermentation and continuous distillation–centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22–0.43 units and reduced costs by $0.07–$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17–19% to 27.5%, increased the ethanol in the beer from 10.5–14.9% at a cost saving of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided.