Sequence Analyses of Just Four Genes To Detect Extensively Drug-Resistant Mycobacterium tuberculosis Strains in Multidrug-Resistant Tuberculosis Patients Undergoing Treatment
- 1 August 2009
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 53 (8) , 3353-3356
- https://doi.org/10.1128/aac.00050-09
Abstract
The rapid detection of Mycobacterium tuberculosis isolates resistant to second-line drugs is crucial for the institution of appropriate treatment regimens as early as possible. Although molecular methods have successfully been used for the rapid detection of resistance to first-line drugs, there are limited data on mutations that confer resistance to second-line drugs. To address this question, we analyzed Mycobacterium tuberculosis strains resistant to ofloxacin ( n = 26) and to capreomycin and/or amikacin ( n = 48) from Uzbekistan for variations in target genes ( gyrA , gyrB , rrs , and tlyA ). Strains susceptible to ofloxacin ( n = 49) and capreomycin and/or amikacin ( n = 39) were included as controls. Mutations in gyrA or gyrB were found in 96% (25/26 strains) of the ofloxacin-resistant strains, while none of the susceptible strains displayed mutations in those two genes. The most common mutation occurred in gyrA at codon 94 (17/26 strains [65.4%]), followed by mutations at codons 90 and 91. Two strains showed a mutation in gyrB , at codons 485 and 543, respectively; both mutations have not been reported previously. The most frequent mutation in strains resistant to both amikacin and capreomycin was A1401G in rrs (34/40 strains [85.0%]). Three strains had mutations in tlyA , of which two (at codons 18 and 118) were associated with resistance to capreomycin alone. Overall, none of the 10 resistant strains (5 amikacin-resistant and capreomycin-susceptible strains) and none of the 39 susceptible control strains had mutations in the genes investigated. Our results clearly demonstrate the potential of sequence analyses of short regions of relatively few target genes for the rapid detection of resistance to second-line drugs among strains isolated from patients undergoing treatment for multidrug-resistant tuberculosis. The mechanisms that confer amikacin resistance in this setting remain unclear.Keywords
This publication has 35 references indexed in Scilit:
- Multidrug-Resistant Tuberculosis Treatment Outcomes in Karakalpakstan, Uzbekistan: Treatment Complexity and XDR-TB among Treatment FailuresPLOS ONE, 2007
- Evaluation of the GenoType MTBDRplus Assay for Rifampin and Isoniazid Susceptibility Testing of Mycobacterium tuberculosis Strains and Clinical SpecimensJournal of Clinical Microbiology, 2007
- Treatment failure in a case of extensively drug-resistant tuberculosis associated with selection of a GyrB mutant causing fluoroquinolone resistanceEuropean Journal of Clinical Microbiology & Infectious Diseases, 2007
- Rapid Genotypic Detection of Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Directly in Clinical SpecimensJournal of Clinical Microbiology, 2006
- Multicenter Laboratory Validation of the BACTEC MGIT 960 Technique for Testing Susceptibilities of Mycobacterium tuberculosis to Classical Second-Line Drugs and Newer AntimicrobialsJournal of Clinical Microbiology, 2006
- Comparison of Two Commercially Available DNA Line Probe Assays for Detection of Multidrug-Resistant Mycobacterium tuberculosisJournal of Clinical Microbiology, 2006
- Role of mycobacterial efflux transporters in drug resistance: an unresolved questionFEMS Microbiology Reviews, 2006
- Mutation of tlyA Confers Capreomycin Resistance in Mycobacterium tuberculosisAntimicrobial Agents and Chemotherapy, 2005
- Rv2686c-Rv2687c-Rv2688c, an ABC Fluoroquinolone Efflux Pump in Mycobacterium tuberculosisAntimicrobial Agents and Chemotherapy, 2004
- Strategies against multidrug-resistant tuberculosisEuropean Respiratory Journal, 2002