Quantum Dots in Magnetic Fields: Phase Diagram and Broken Symmetry at the Maximum-Density-Droplet Edge

Abstract
Quantum dots in magnetic fields are studied within the current spin-density-functional formalism avoiding any spatial symmetry restrictions of the solutions. We find that the maximum-density droplet reconstructs into states with broken internal symmetry: The Chamon-Wen edge coexists with a modulation of the charge density along the edge. The phase boundaries between the polarization transition, the maximum-density droplet, and its reconstruction are in agreement with recent experimental results.
All Related Versions