Simple Fiber Model for Determination of XPM Effects

Abstract
Previous investigations have revealed that the impairments of the cross-phase modulation (XPM) in dense wavelength-division multiplexing (DWDM) systems include two aspects: the XPM-induced phase noise and the XPM-induced polarization scattering. Such XPM phenomena are strongly dependent on the transmission system configurations and are nonintuitive. In this paper, a simple fiber model is proposed to facilitate the determination of XPM effects. By employing this model, the phase noise and polarization scattering are calculated based on the system configurations and the time-consuming computation by the split step Fourier method is avoided. The proposed model is verified by the dual polarization quadrature phase-shift keying coherent DWDM experiments and simulations in terms of the variance and autocorrelations of phase noise and polarization crosstalk as well as their dependence on relative polarization states and the overall Q-impairment. The proposed model helps deeper analysis of XPM phenomena, and eventually, leads to development of various XPM mitigation methods through transmission system design and coherent receiver DSP.

This publication has 32 references indexed in Scilit: