Accurate Analytic Static and Dynamic Polarizabilities forvia the Asymptotic Approximation
- 1 February 1972
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 5 (2) , 508-514
- https://doi.org/10.1103/physreva.5.508
Abstract
Accurate closed analytic expressions for certain properties of that strongly depend on the long-range tail of its wave function are given. These properties are , the static electric multipole polarizabilities, and the dynamic dipole polarizability. From the last, the photodetachment cross section is calculated and the simple but accurate result obtained by Armstrong is recovered. The only assumption made is that the exact wave function can be replaced by its rigorous asymptotic form, for the purpose of calculating these properties. No model potentials or arbitrary cutoffs are introduced. The results for the dipole polarizabilities agree to better than 5% with the extensive recent calculations of Chung. For , , the formula obtained agrees to within 0.5% with values obtained from large calculations. For all these quantities, the Hartree-Fock results are far inferior.
This publication has 33 references indexed in Scilit:
- Hyperpolarizabilities of, He, andPhysical Review B, 1968
- Correlation of Electrons Within the Hydride IonThe Journal of Chemical Physics, 1968
- Electric-Dipole Polarizability of Atoms by the Hartree—Fock Method. II. The Isoelectronic Two- and Four-Electron SeriesThe Journal of Chemical Physics, 1965
- Atomic Dipole Polarizabilities from the Uncoupled Hartree-Fock ApproximationPhysical Review B, 1964
- Analytical Formula for Continuous Absorption Coefficient of the Hydrogen Negative IonPhysical Review B, 1961
- Twenty-Parameter Eigenfunctions and Energy Values of the Ground States of He and He-Like IonsPhysical Review B, 1957
- Continuous Absorption Coefficient of the Hydrogen and Lithium Negative IonsPhysical Review B, 1956
- The Effective Range of Nuclear Forces II. Photo-Disintegration of the DeuteronPhysical Review B, 1950
- Theory of the Effective Range in Nuclear ScatteringPhysical Review B, 1949
- Quantum theory of the diplonProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1935