Polarization-enhanced Mg doping of AlGaN/GaN superlattices

Abstract
The hole-transport properties of Mg-doped AlGaN/GaN superlattices are carefully examined. Variable-temperature Hall-effect measurements indicate that the use of such superlattices enhances the average hole concentration at a temperature of 120 K by over five orders of magnitude compared to a bulk GaN film (the enhancement at room temperature is a factor of 9). An unusual modulation-doping scheme, which has been realized using molecular-beam epitaxy, has yielded high-hole-mobility superlattices and conclusively demonstrated the pivotal role of piezoelectric and spontaneous polarization in determining the band structure of the superlattices.